VAE outlier detection for income prediction
Method
Dataset
!pip install alibi seabornimport os
import alibi
import matplotlib
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
from sklearn.metrics import accuracy_score, confusion_matrix, f1_score, precision_score, recall_score
from sklearn.preprocessing import OneHotEncoder
import tensorflow as tf
tf.keras.backend.clear_session()
from tensorflow.keras.layers import Dense, InputLayer
from alibi_detect.od import OutlierVAE
from alibi_detect.utils.perturbation import inject_outlier_tabular
from alibi_detect.utils.fetching import fetch_detector
from alibi_detect.saving import save_detector, load_detector
from alibi_detect.utils.visualize import plot_instance_scoreLoad adult dataset
Preprocess data
Create outliers
Numerical
Apply one-hot encoding
Load or define outlier detector
Detect outliers
Display results
PreviousTime series outlier detection with Spectral Residuals on synthetic dataNextVAE outlier detection on CIFAR10
Last updated
Was this helpful?

